Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
filereference:output:atmosphere [2017/11/13 14:35] enviadminfilereference:output:atmosphere [2021/11/12 08:46] (current) enviadmin
Line 1: Line 1:
 ====== Output Files: Atmosphere data (_AT_) ====== ====== Output Files: Atmosphere data (_AT_) ======
-<WRAP box left 95%>+ 
 + 
 +<WRAP tabs> 
 +  * [[filereference:output:start|← go back to Output File Index]] 
 +  * [[filereference:output:surface|see also: Surface Files]] 
 +  * [[filereference:output:soil|see also: Soil Files]] 
 +</WRAP> 
 + 
 +<WRAP box center 99%>
 <WRAP box left 40%> <WRAP box left 40%>
-^Dimension ^ Nr Variables ^Format ^ +^ Dimension ^ Nr Variables ^ Format ^ 
-| 3D | 36 | Binary (EDX/EDT) |+| 3D | 43 (with Water Spray) | Binary (EDX/EDT) |
 </WRAP> </WRAP>
 +
 **Atmosphere Data**  **Atmosphere Data** 
  
Line 12: Line 21:
 <WRAP clear></WRAP> <WRAP clear></WRAP>
 The Atmosphere data files are produced each main output interval (default: 60 min) and represent the general state of the atmosphere at the given model time.  The Atmosphere data files are produced each main output interval (default: 60 min) and represent the general state of the atmosphere at the given model time. 
 +These files contain a broad selection of different items from simple meteorological data such as wind speed and air temperature up to detailed information such as plant CO2 fluxes. Using the _AT_ files, most of the processes in the atmosphere can be analysed. However, there are further files concerning the atmosphere dealing with more specific topics such as radiation or pollutant dispersions. 
  
-These files contain a broad selection of different items from simple meteorological data such as wind speed and air temperature up to detailed information such as plant CO2 fluxes+Note, that the surface data are not part of the atmosphere data, but of the [[filereference:output:surface|Surface/ Flux (_FX_) files]]. 
 +  
 +If you use Water Spray in your simulation, the data on the spray distribution and cooling effect are also stored in this file. 
 + 
 +<WRAP box center 99%> 
 +==== Variable list ==== 
 +|  |**Variable** |**Unit** |**Description** | 
 +|  |Objects| -| Single object IDs to visualize the model domain: 1: Building, 2: Terrain, 4: Containes Source, 11 -15: Vegetation with increasing LAD. These definitions are also stored in the default LEONARDO Special Layer Definition File | 
 +|  |Flow u | m/s | Wind speed. Vector component along the West-East axis (+: East, -: West) | 
 +|  |Flow v | m/s  | Wind speed. Vector component along the North-South axis (+: South, -: North) | 
 +|  |Flow w | m/s  | Wind speed. Vector component along the vertical axis (+: up, -: down) |  
 +|  |Wind Speed | m/s  | Wind speed. Vector sum over all 3 axis | 
 +|  |Wind Speed Change | % | Wind speed change in percent referring to the undisturbed inflow profile at the same height level.|  
 +|  |Wind Direction | deg | Wind direction of horizontal component in geographic reference (0: N..90:E..180:S etc)  | 
 +|  |Pressure Perturbation | Pa | Dynamic pressure as a result of the wind field calculation. Pressure values will add up over time, use spatial difference values only if required|  
 +|  | Potential Air Temperature | °C | Potential air temperature at reference (and model default) pressure. For the 3D model, it can be treated like the absolute air temperature|  
 +| | Air Temperature Delta| K| Difference between the local air temperature and the reference air temperature at inflow at the same height level |  
 +| | Air Temperature Change | K/h | Changes of air temperature compared to the last _AT_ output file |  
 +| | Specific Humidity | g/kg | Specific air humidity |  
 +| | Relative Humidity | % | Relative air humidity (Caution: Depends both on Specific air humidity and air temperature)|  
 +| | TKE | m²/m³ | Local Turbulent Kinetic Energy |  
 +| | Dissipation | m³/m³ | Local dissipation rate of Turbulent Kinetic Energy|  
 +| | Mean Radiant Temperature | °C | The composed radiative fluxes and air temperature for a standing person|  
 +| | Vertical Exchange Coefficient Impulse | m²/s | Calculated vertical exchange coefficient for impulse| 
 +| | Horizontal Exchange Coefficient Impulse | m²/s | Calculated horizontal exchange coefficient for impulse (At the moment for microscale assumed to be equal to the vertical exchange coefficient) |  
 +| | Direct Shortwave Radiation | W/m²| Available direct solar radiation referring to a reference surface perpendicular to the incoming sun rays (maximum value before applying Lamberts' law) |  
 +| | Diffuse Shortwave Radiation | W/m² | Available diffuse solar radiation referring to a horizontal reference surface |  
 +| | Reflected Shortwave Radiation | W/m² | Availablereflected solar radiation from the environment referring to a horizontal reference surface | 
 +|  | Air Temperature Change through LW Cooling | K/h | Effect of longwave radiation divergence on air temperature per time | 
  
-Using the _AT_ files, most of the processes in the atmosphere can be analysed. However, there are further files concerning the atmosphere dealing with more specific topics such as radiation or pollutant dispersions. +=== Vegetation Data ===
  
-Note, that the surface data are not part of the atmosphere data, but of the surface and flux (_FX_) files.+| | Vegetation LAD | m²/m³ | One-sided Leaf Area Density (Surface of leaf area per m³ air) |  
 +| | Leaf Temperature | °C | Temperature of the leaf |  
 +| | Temperature Flux at Leaf | K*m/s | Temperature Flux in K from leaf to atmosphere |  
 +| | Stomata Resistance | s/m | Actual resistance of stomata to vapour transfer| 
 +| | Vapour Flux at Leaf | g/kg*m/s | Evaportation and transpiration flux on leaf per leaf area unit|  
 +| | Water on Leafes | g/ m² | Liquid water on leaf per leaf area|
    
  
-<WRAP box left 80%> +=== CO2 === 
-=== Variable list ===+| | CO2  |mg/m³ | Atmospheric CO2 |  
 +| | CO2 | ppm | Atmospheric CO2|  
 +| | CO2 Flux at Leaf | mg/kg*m/s | CO2 Flux at leaf per leaf area unit|
  
-<fs x-small>This list represents the variable structure used from Preview III on. In earlier versions, the same information is stored, but the names might differ and the order of the variables is different.</fs> 
  
-^Nr ^ Variable ^Unit ^Description ^ +=== Water Spray (only if active)  === 
-| 1 |Objects| -| Single object IDs to visualize the model domain. Meaning of the different IDs is stored in LEONARDO Special Layer Definition Files | +| | Spray source  |g/s | Actual emission rate of water spray at source |  
-| 2 |Flow u | m/s | Wind speed. Vector component along the West-East axis (+: East, -: West+| | Spray concentration g/m³ Mass of water spray in the air |  
-| 3 |Flow v | m/s  | Wind speed. Vector component along the North-South axis (+: South, -: North) | +| | Spray evaporation  | g/(m³s) | Local evaporation rate of water spray
-|Flow w | m/s  Wind speed. Vector component along the vertical axis (+: up, -: down) |  +| | Spray Cooling  | K/Local cooling rate of air due to water spray evaporation|
-| 5 |Wind Speed | m/s  Wind speed. Vector sum over all 3 axis | +
-| 6 |Wind Speed Change | % | Wind speed change in percent referring to the undisturbed inflow profile at the same height level.|  +
-|Wind Direction deg Wind direction of horizontal component in geographic reference (0: N..90:E..180:S etc)  | +
-| 8 |Pressure Perturbation | Pa | Dynamic pressure as a result of the wind field calculation. Pressure values will add up over time, use spatial difference values only if required|  +
-| 9 | Air Temperature | °C | Potential air temperature at reference (and model default) pressure. For the 3D model, it can be treated like the absolute air temperature|  +
-10Air Temperature difference to Inflow | K| Difference between the local air temperature and the reference air temperature at inflow at the same height level |  +
-| 11| Air Temperature Change | K/h | Changes of air temperature compared to the last _AT_ output file |  +
-| 12| Specific Humidity | g/kg | Specific air humidity |  +
-| 13| Relative Humidity | % | Relative air humidity (Caution: Depends both on Specific air humidity and air temperature)|  +
-| 14| TKE | m²/m³ | Local Turbulent Kinetic Energy |  +
-| 15| TKE Dissipation | m³/m³ | Local dissipation rate of Turbulent Kinetic Energy|  +
-16Mean Radiant Temperature | °C | The composed radiative fluxes and air temperature for a standing person|  +
-| 17 | CO2 Concentration | mg/m3 | CO2 concentration in the model domain (weight units) | +
-| 18 | CO2 Concentration | ppm | CO2 concentration in the model domain (parts units) |  +
-| 19 | Vertical Exchange Coefficient Impulse | m²/s | Calculated vertical exchange coefficient for impulse| +
-| 20| Horizontal Exchange Coefficient Impulse | m²/s | Calculated horizontal exchange coefficient for impulse (At the moment for microscale assumed to be equal to the vertical exchange coefficient) |  +
-| 21| Direct Shortwave Radiation | W/m²| Available direct solar radiation referring to a reference surface perpendicular to the incoming sun rays (maximum value before applying Lamberts' law) |  +
-| 22| Diffuse Shortwave Radiation | W/m² | Available diffuse solar radiation referring to a horizontal reference surface |  +
-| 23| Reflected Shortwave Radiation | W/m² | Availablereflected solar radiation from the environment referring to a horizontal reference surface | +
-| 24 | Air Temperature Change through LW Cooling | K/Effect of longwave radiation divergence on air temperature per time +
  
-Vegetation Data +===  Other Data === 
-25Vegetation LAD m²/m³ One-sided Leaf Area Density (Surface of leaf area per m³ air) |  + 
-26Leaf Temperature °C Temperature of the leaf |  +| | Local Mixing Length Local mixing length calculated from TKE model|  
-27Temperature Flux at Leaf K*m/s Temperature Flux in K from leaf to atmosphere |  +| | TKE normalised with 1D model Local TKE normlized to 1 with 1D reference model |  
-28 Stomata Resistance s/m Actual resistance of stomata to vapour transfer+| | Dissipation normalised with 1D model Local TKE dissiplation normlized to 1 with 1D reference model 
-29Vapour Flux at Leaf g/kg*m/| |  +| | Km normalised with 1D model Local Km normlized to 1 with 1D reference model 
-30Water on Leaf gm² | | +| | TKE Mechanical Turbulence Production ( ) Local TKE mechnical production normlized to 1 with 1D reference model |  
-31 CO2 Flux at Leaf mg/kg*m/| | +| | Div Rlw Temp change  K/Radiative cooling/heating rate of air due to longwave radiation divergence 
 +| | Building Number  Internal Building Number |
  
-Other Data 
-| 32| Local Mixing Length | m | |  
-| 33| TKE normalised with 1D model | - | |  
-| 34 | Dissipation normalised with 1D model | - | 
-| 35 | Km normalised with 1D model | - |  
-| 36 | TKE Mechanical Turbulence Production | ( ) |  
  
-  
  
 </WRAP> </WRAP>
 <WRAP clear></WRAP> <WRAP clear></WRAP>